Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...



Note: For Matrix and PlainDeformationMatrix results, the Si, Sii and Siii components are calculated by GiD, which represents the eigen values & vectors of the matrix results, and which are ordered according to the eigen value.Results exampleHere is an example of results for the table in the previous example (see Mesh example):

Code Block
GiD Post Results File 1.0

GaussPoints "Board gauss internal" ElemType Triangle "board"
  Number Of Gauss Points: 3
  Natural Coordinates: internal
end gausspoints

GaussPoints "Board gauss given" ElemType Triangle "board"
  Number Of Gauss Points: 3
  Natural Coordinates: Given
      0.2 0.2
      0.6 0.2
      0.2 0.6
End gausspoints

GaussPoints "Board elements" ElemType Triangle "board"
  Number Of Gauss Points: 1
  Natural Coordinates: internal
end gausspoints

GaussPoints "Legs gauss points" ElemType Line
  Number Of Gauss Points: 5
  Nodes included
  Natural Coordinates: Internal
End Gausspoints	

ResultRangesTable "My table"
# el ultimo rango es min <= res <= max
      - 0.3: "Less"
  0.3 - 0.9: "Normal"
  0.9 - 1.2: "Too much"
End ResultRangesTable

Result "Gauss element" "Load Analysis" 1 Scalar OnGaussPoints "Board elements"
Values
    5     0.00000E+00 
    6     0.20855E-04 
    7     0.35517E-04 
    8     0.46098E-04 
    9     0.54377E-04 
   10     0.60728E-04 
   11     0.65328E-04 
   12     0.68332E-04 
   13     0.69931E-04 
   14     0.70425E-04 
   15     0.70452E-04 
   16     0.51224E-04 
   17     0.32917E-04 
   18     0.15190E-04 
   19    -0.32415E-05 
   20    -0.22903E-04 
   21    -0.22919E-04 
   22    -0.22283E-04 
End Values

Result "Displacements" "Load Analysis"  1  Vector OnNodes
ResultRangesTable "My table"
ComponentNames "X-Displ", "Y-Displ", "Z-Displ"
Values
    1    0.0   0.0   0.0
    2   -0.1   0.1   0.5
    3    0.0   0.0   0.8
    4   -0.04  0.04  1.0
    5   -0.05  0.05  0.7
    6    0.0   0.0   0.0
    7   -0.04 -0.04  1.0
    8    0.0   0.0   1.2
    9   -0.1  -0.1   0.5
   10    0.05  0.05  0.7
   11   -0.05 -0.05  0.7
   12    0.04  0.04  1.0
   13    0.04 -0.04  1.0
   14    0.05 -0.05  0.7
   15    0.0   0.0   0.0
   16    0.1   0.1   0.5
   17    0.0   0.0   0.8
   18    0.0   0.0   0.0
   19    0.1  -0.1   0.5
End Values

Result "Gauss displacements" "Load Analysis" 1 Vector OnGaussPoints "Board gauss given"
Values
    5    0.1  -0.1   0.5
         0.0   0.0   0.8
         0.04 -0.04  1.0
    6    0.0   0.0   0.8
        -0.1  -0.1   0.5
        -0.04 -0.04  1.0
    7   -0.1   0.1   0.5
         0.0   0.0   0.8
        -0.04  0.04  1.0
    8    0.0   0.0   0.8
         0.1   0.1   0.5
         0.04  0.04  1.0
    9    0.04  0.04  1.0
         0.1   0.1   0.5
         0.05  0.05  0.7
   10    0.04  0.04  1.0
         0.05  0.05  0.7
        -0.04  0.04  1.0
   11   -0.04 -0.04  1.0
        -0.1  -0.1   0.5
        -0.05 -0.05  0.7
   12   -0.04 -0.04  1.0
        -0.05 -0.05  0.7
         0.04 -0.04  1.0
   13   -0.1   0.1   0.5
        -0.04  0.04  1.0
        -0.05  0.05  0.7
   14   -0.05  0.05  0.7
        -0.04  0.04  1.0
         0.05  0.05  0.7
   15    0.1  -0.1   0.5
         0.04 -0.04  1.0
         0.05 -0.05  0.7
   16    0.05 -0.05  0.7
         0.04 -0.04  1.0
        -0.05 -0.05  0.7
   17    0.0   0.0   0.8
        -0.04 -0.04  1.0
        -0.04  0.04  1.0
   18    0.0   0.0   0.8
         0.04  0.04  1.0
         0.04 -0.04  1.0
   19    0.04 -0.04  1.0
         0.04  0.04  1.0
         0.0   0.0   1.2 
   20    0.04 -0.04  1.0
         0.0   0.0   1.2
        -0.04 -0.04  1.0
   21   -0.04 -0.04  1.0
         0.0   0.0   1.2
        -0.04  0.04  1.0
   22   -0.04  0.04  1.0
         0.0   0.0   1.2
         0.04  0.04  1.0
End Values

Result "Legs gauss displacements" "Load Analysis" 1 Vector OnGaussPoints "Legs gauss points"
Values
    1   -0.1  -0.1   0.5
        -0.2  -0.2   0.375
        -0.05 -0.05  0.25 
         0.2   0.2   0.125
         0.0   0.0   0.0
    2    0.1  -0.1   0.5
         0.2  -0.2   0.375
         0.05 -0.05  0.25 
        -0.2   0.2   0.125
         0.0   0.0   0.0
    3    0.1   0.1   0.5
         0.2   0.2   0.375
         0.05  0.05  0.25 
        -0.2  -0.2   0.125
         0.0   0.0   0.0
    4   -0.1   0.1   0.5
        -0.2   0.2   0.375
        -0.05  0.05  0.25 
         0.2  -0.2   0.125
         0.0   0.0   0.0
End Values