...
Note: For Matrix and PlainDeformationMatrix results, the Si, Sii and Siii components are calculated by GiD, which represents the eigen values & vectors of the matrix results, and which are ordered according to the eigen value.Results exampleHere is an example of results for the table in the previous example (see Mesh example):
Code Block |
---|
GiD Post Results File 1.0
GaussPoints "Board gauss internal" ElemType Triangle "board"
Number Of Gauss Points: 3
Natural Coordinates: internal
end gausspoints
GaussPoints "Board gauss given" ElemType Triangle "board"
Number Of Gauss Points: 3
Natural Coordinates: Given
0.2 0.2
0.6 0.2
0.2 0.6
End gausspoints
GaussPoints "Board elements" ElemType Triangle "board"
Number Of Gauss Points: 1
Natural Coordinates: internal
end gausspoints
GaussPoints "Legs gauss points" ElemType Line
Number Of Gauss Points: 5
Nodes included
Natural Coordinates: Internal
End Gausspoints
ResultRangesTable "My table"
# el ultimo rango es min <= res <= max
- 0.3: "Less"
0.3 - 0.9: "Normal"
0.9 - 1.2: "Too much"
End ResultRangesTable
Result "Gauss element" "Load Analysis" 1 Scalar OnGaussPoints "Board elements"
Values
5 0.00000E+00
6 0.20855E-04
7 0.35517E-04
8 0.46098E-04
9 0.54377E-04
10 0.60728E-04
11 0.65328E-04
12 0.68332E-04
13 0.69931E-04
14 0.70425E-04
15 0.70452E-04
16 0.51224E-04
17 0.32917E-04
18 0.15190E-04
19 -0.32415E-05
20 -0.22903E-04
21 -0.22919E-04
22 -0.22283E-04
End Values
Result "Displacements" "Load Analysis" 1 Vector OnNodes
ResultRangesTable "My table"
ComponentNames "X-Displ", "Y-Displ", "Z-Displ"
Values
1 0.0 0.0 0.0
2 -0.1 0.1 0.5
3 0.0 0.0 0.8
4 -0.04 0.04 1.0
5 -0.05 0.05 0.7
6 0.0 0.0 0.0
7 -0.04 -0.04 1.0
8 0.0 0.0 1.2
9 -0.1 -0.1 0.5
10 0.05 0.05 0.7
11 -0.05 -0.05 0.7
12 0.04 0.04 1.0
13 0.04 -0.04 1.0
14 0.05 -0.05 0.7
15 0.0 0.0 0.0
16 0.1 0.1 0.5
17 0.0 0.0 0.8
18 0.0 0.0 0.0
19 0.1 -0.1 0.5
End Values
Result "Gauss displacements" "Load Analysis" 1 Vector OnGaussPoints "Board gauss given"
Values
5 0.1 -0.1 0.5
0.0 0.0 0.8
0.04 -0.04 1.0
6 0.0 0.0 0.8
-0.1 -0.1 0.5
-0.04 -0.04 1.0
7 -0.1 0.1 0.5
0.0 0.0 0.8
-0.04 0.04 1.0
8 0.0 0.0 0.8
0.1 0.1 0.5
0.04 0.04 1.0
9 0.04 0.04 1.0
0.1 0.1 0.5
0.05 0.05 0.7
10 0.04 0.04 1.0
0.05 0.05 0.7
-0.04 0.04 1.0
11 -0.04 -0.04 1.0
-0.1 -0.1 0.5
-0.05 -0.05 0.7
12 -0.04 -0.04 1.0
-0.05 -0.05 0.7
0.04 -0.04 1.0
13 -0.1 0.1 0.5
-0.04 0.04 1.0
-0.05 0.05 0.7
14 -0.05 0.05 0.7
-0.04 0.04 1.0
0.05 0.05 0.7
15 0.1 -0.1 0.5
0.04 -0.04 1.0
0.05 -0.05 0.7
16 0.05 -0.05 0.7
0.04 -0.04 1.0
-0.05 -0.05 0.7
17 0.0 0.0 0.8
-0.04 -0.04 1.0
-0.04 0.04 1.0
18 0.0 0.0 0.8
0.04 0.04 1.0
0.04 -0.04 1.0
19 0.04 -0.04 1.0
0.04 0.04 1.0
0.0 0.0 1.2
20 0.04 -0.04 1.0
0.0 0.0 1.2
-0.04 -0.04 1.0
21 -0.04 -0.04 1.0
0.0 0.0 1.2
-0.04 0.04 1.0
22 -0.04 0.04 1.0
0.0 0.0 1.2
0.04 0.04 1.0
End Values
Result "Legs gauss displacements" "Load Analysis" 1 Vector OnGaussPoints "Legs gauss points"
Values
1 -0.1 -0.1 0.5
-0.2 -0.2 0.375
-0.05 -0.05 0.25
0.2 0.2 0.125
0.0 0.0 0.0
2 0.1 -0.1 0.5
0.2 -0.2 0.375
0.05 -0.05 0.25
-0.2 0.2 0.125
0.0 0.0 0.0
3 0.1 0.1 0.5
0.2 0.2 0.375
0.05 0.05 0.25
-0.2 -0.2 0.125
0.0 0.0 0.0
4 -0.1 0.1 0.5
-0.2 0.2 0.375
-0.05 0.05 0.25
0.2 -0.2 0.125
0.0 0.0 0.0
End Values |