...
- a literal then the resultant graph is ( g1x1 op literal.a, g1x2 op literal.a, ..., g1xn op literal.a) and ( g1y1 op literal.b, g1y2 op literal.b, ..., g1yn op literal.b)
- a graph ( graph2) then the result is ( ( r11 op r21, r12 op r22, ..., r1n op r2n).
The other operators needs a graph as operand and the axis to be precessed processed can be selected in some of them.
If graph2 = ( g2x1, g2x2, ..., g2xn) and ( g2y1, g2y2, ..., g2yn) is the operand then:- Abs: The result is ( abs( g2x1), abs( g2x2), ..., abs( g2xn)) or ( abs( g2y1), abs( g2y2), ..., abs( g2yn));
- SqrtAbs: The result is ( sqrt( abs( g2x1)), sqrt( abs( g2x2)), ..., sqrt( abs( g2xn))) or ( sqrt( abs( g2y1)), sqrt( abs( g2y2)), ..., sqrt( abs( g2yn)));
- LogAbs: The result is ( log( abs( g2x1)), log( abs( g2x2)), ..., log( abs( g2xn))) or ( log( abs( g2y1)), log( abs( g2y2)), ..., log( abs( g2yn)));
- Log10Abs: The result is ( log10( abs( g2x1)), log10( abs( g2x2)), ..., log10( abs( g2xn))) or ( log10( abs( g2y1)), log10( abs( g2y2)), ..., log10( abs( g2yn)));
- db10: The result is ( 10·log10( abs( g2x1)), 10·log10( abs( g2x2)), ..., 10·log10( abs( g2xn))) or ( 10·log10( abs( g2y1)), 10·log10( abs( g2y2)), ..., 10·log10( abs( g2yn)));
- db20: The result is ( 20·log10( abs( g2x1)), 20·log10( abs( g2x2)), ..., 20·log10( abs( g2xn))) or ( 20·log10( abs( g2y1)), 20·log10( abs( g2y2)), ..., 20·log10( abs( g2yn)));
- Exp: The result is ( eg2x1, eg2x2, ..., eg2xn) or ( eg2y1, eg2y2, ..., eg2yn);
- Pow10: The result is ( 10g2x1, 10g2x2, ..., 10g2xn) or ( 10g2y1, 10g2y2, ..., 10g2yn);
- 1/: The result is ( 1 / g2x1, 1 / g2x2, ..., 1 / g2xn) or ( 1 / g2y1, 1 / g2y2, ..., 1 / g2yn);
- derivate: Will create a graph with the derivate values of graph2: ( g2x1 + offset * ( g2x2 - g2x1), g2x2 + offset * ( g2x3 - g2x2), ..., g2xn-1 + offset * ( g2xn - g2xn)) and ( ( g2y2 - g2y1) / ( g2x2 - g2x1), ( g2y3 - g2y2) / ( g2x3 - g2x2), ..., ( g2yn - g2yn-1) / ( g2xn - g2xn-1)), offset can be set by the user;
- integral: Will create a graph with the accumulated values of graph2: ( g2x1, g2x2, g2x3, ..., g2xn) and ( 0, SumArea( g2x1 ... g2x2, g2y1 ... g2y2), SumArea( g2x1 ... g2x3, g2y1 ... g2y3), ..., SumArea( g2x1 ... g2xn, g2y1 ... g2yn);
- fit: Will fit the bounding box of graph2 to the bounding box graph1, also the x or the y axis can be fitted;
- dFT: Does the discrete fourier transform on graph2, fat fourier transform if the number of values is power of 2, several options can be set by the user with the following options window ( the create polar graph calculates the modulus for the x values and the phase for the y values which can be used to draw the polar graph using the Window --> View graphs window):
...