Results can be grouped into one block. These results belong to the same time step of the same analysis and are located in the same place. So all the results in the group are nodal results or are defined over the same gauss points set.
Each Result group is identified by a ResultGroup header, followed by the results descriptions and its optional properties - such as components names and ranges tables, and the results values - all between the lines Values and End values.
The structure is as follows and should:
...
ResultGroup "analysis name" step_value my_location "location name"
where
ResultGroup: is not case-sensitive;
"analysis name": is the name of the analysis of this ResultGroup, which will be used for menus; if the analysis name contains spaces it should be written between "" or between {}.
step_value: is the value of the step inside the analysis "analysis name";
my_location: is where the ResultGroup is located. It should be one of the following: OnNodes, OnGaussPoints. If the ResultGroup is OnGaussPoints, a "location name" should be entered.
"location name": is the name of the Gauss Points on which the ResultGroup is defined.
- Be followed by at least one of the results descriptions of the group
ResultDescription "result name" my_result_type[:components_number]
ResultRangesTable "Name of a result ranges table"
ComponentNames "Name of Component 1", "Name of Component 2"
Unit "unit name"
where
ResultDescription: is not case-sensitive;
"result name": is a name for the Result, which will be used for menus; if the result name contains spaces it should be written between "" or between {}.
my_type: describes the type of the Result. It should be one of the following: Scalar, Vector, Matrix, PlainDeformationMatrix, MainMatrix, or LocalAxes. The number of components for each type is as follows:
One for a Scalar: the_scalar_value
Three for a Vector: X, Y and Z
Six for a Matrix: Sxx, Syy, Szz, Sxy, Syz and Sxz
Four for a PlainDeformationMatrix: Sxx_value, Syy, Sxy and Szz
Twelve for a MainMatrix: Si, Sii, Siii, ViX, ViY, ViZ, ViiX, ViiY, ViiZ, ViiiX, ViiiY and ViiiZ
Three for a LocalAxes: euler_ang_1, euler_ang_2 and euler_ang_3
Two for ComplexScalar: real and imag
Six for ComplexVector: x_real, x_imag, y_real, y_imag, z_real, z_imag
Twelve for ComplexMatrix: Sxx_real, Syy_real, Szz_real, Sxy_real, Syz_real, Sxz_real, Sxx_imag, Syy_imag, Szz_imag, Sxy_imag, Syz_imag, Sxz_imag
Following the description of the type of the result, an optional modifier can be appended to specify the number of components separated by a colon. It only makes sense to indicate the number of components on vectors and matrices:
Vector:2, Vector:3 or Vector:4: which specify:
Vector:2: X and Y
Vector:3: X, Y and Z
Vector:4: X, Y, Z and |Vector| (module of the vector, with sign for some tricks)
The default (Vector) is 3 components per vector.
Matrix:3 or Matrix:6: which specify:
Matrix:3: Sxx, Syy and Sxy
Matrix:6: Sxx, Syy, Szz, Sxy, Syz and Sxz
The default (Matrix) is 6 components for matrices.
ComplexVector:4 or ComplexVector:6 which specify
ComplexVector:4: x_real, x_imag, y_real, y_imag
ComplexVector:6: x_real, x_imag, y_real, y_imag, z_real, z_imag
ComplexMatrix:3 or ComplexMatrix:6 which specify
ComplexMatrix:3: Sxx_real, Syy_real, Sxy_real, Sxx_imag, Syy_imag, Sxy_imag
ComplexMatrix:6: Sxx_real, Syy_real, Szz_real, Sxy_real, Syz_real, Sxz_real, Sxx_imag, Syy_imag, Szz_imag, Sxy_imag, Syz_imag, Sxz_imag
Here are some examples:
Code Block |
---|
ResultDescription "Displacements" Vector:2 |
...
Unit "m" ResultDescription "2D matrix" Matrix:3 |
...
ResultDescription "LineDiagramVector" Vector:4 Unit "Kg·m^2" |
and where (optional properties)
- ResultRangesTable "Name of a result ranges table": (optional) is not case-sensitive, and is followed by the name of the previously defined Result Ranges Table which will be used if the Contour Ranges result visualization is chosen (see Result Range Table);
- ComponentNames "Name of Component 1", "Name of Component 2": (optional) is not case-sensitive, and is followed by the names of the components of the results which will be used in GiD. The number of Component Names are:
One for a Scalar Result
Three for a Vector Result
Six for a Matrix Result
Four for a PlainDeformationMatrix Result
Six for a MainMatrix Result
Three for a LocalAxes Result
- End with the results values:
Values
location_1 result_1_component_1_value result_1_component_2_value result_1_component_3_value result_2_component_2_value result_2_component_2_value result_2_component_3_value
. . .
location_n result_1_component_1_value result_1_component_2_value result_1_component_3_value result_2_component_2_value result_2_component_2_value result_2_component_3_value
End Values
where
Values: is not case-sensitive, and indicates the beginning of the results values section;
The lines
location_1 result_1_component_1_value result_1_component_2_value result_1_component_3_value result_2_component_2_value result_2_component_2_value result_2_component_3_value
. . .
location_n result_1_component_1_value result_1_component_2_value result_1_component_3_value result_2_component_2_value result_2_component_2_value result_2_component_3_value
are the values of the various results described with ResultDescription for each location. All the results values for the location 'i' should be written in the same line 'i'.
The number of results values are limited thus:
If the Result is located OnNodes, they are limited to the number of nodes defined in ProjectName.post.msh.
If the Result is located OnGaussPoints "My GP", and if the Gauss Points "My GP" are defined for the mesh "My mesh", the limit is the number of gauss points in "My GP" multiplied by the number of elements of the mesh "My mesh".
Holes are allowed. The element nodes with no result defined will not be drawn, i.e. they will appear transparent.
The number of components for each ResultDescription are:
for Scalar results: one component result_number_i scalar_value
for Vector results: three components result_number_i x_value y_value z_value
for Matrix results: six components (3D models)3D: result_number_i Sxx_value Syy_value Szz_value Sxy_value Syz_value Sxz_value
for PlainDeformationMatrix results: four components result_number_i Sxx_value Syy_value Sxy_value Szz_value
for MainMatrix results: twelve components result_number_i Si_value Sii_value Siii_value Vix_value Viy_value Viz_value Viix_value Viiy_value Viiz_value Viiix_value Viiiy_value Viiiz_value
for LocalAxes results: three components describing the Euler angles result_number_i euler_ang_1_value euler_ang_2_value euler_ang_3_value
End Values: is not case-sensitive, and indicates the end of the results group values section.
Note: Vectors in a ResultGroup always have three components.
Note: Matrices in a ResultGroup always have six components.
Note: All the results of one node or gauss point should be written on the same line.
Note: For Matrix and PlainDeformationMatrix results, the Si, Sii and Siii components are calculated by GiD, which represents the eigen values & vectors of the matrix results, and which are ordered according to the eigen value.
Nodal ResultGroup example:
Code Block |
---|
ResultGroup "Load Analysis" 1 OnNodes |
...
ResultDescription "Ranges test" Scalar |
...
ResultRangesTable "My table" |
...
ResultDescription "Scalar test" Scalar |
...
ResultRangesTable "Pressure" |
...
Unit "Kg·m^2" ResultDescription "Displacements" Vector |
...
ComponentNames "X-Displ", "Y-Displ" "Z-Displ" |
...
Unit "m" ResultDescription "Nodal Stresses" Matrix |
...
ComponentNames "Sx", "Sy", "Sz", "Sxy", "Syz", "Sxz" |
...
Values 1 0.0 0.000E+00 0.000E+00 0.000E+00 0.0 0.550E+00 0.972E-01 -0.154E+00 0.0 0.0 0.0 |
...
2 6.4e-01 0.208E-04 0.208E-04 -0.191E-04 0.0 0.506E+00 0.338E-01 -0.105E+00 0.0 0.0 0.0 |
...
3 0.0 0.355E-04 0.355E-04 -0.376E-04 0.0 0.377E+00 0.441E-02 -0.547E-01 0.0 0.0 0.0 |
...
... |
...
115 7.8e-01 0.427E-04 0.427E-04 -0.175E-03 0.0 0.156E-01 -0.158E-01 -0.300E-01 0.0 0.0 0.0 |
...
116 7.4e-01 0.243E-04 0.243E-04 -0.189E-03 0.0 0.216E-02 -0.968E-02 -0.231E-01 0.0 0.0 0.0 |
...
End Values |
Gauss Points ResultGroup example:
Code Block |
---|
GaussPoints "My Gauss" ElemType Triangle "2D Beam" |
...
Number Of Gauss Points: 3 |
...
Natural Coordinates: Internal |
...
End gausspoints |
...
ResultGroup "Load Analysis" 1 OnGaussPoints "My Gauss" |
...
ResultDescription "Gauss test" Scalar |
...
ResultDescription "Vector Gauss" Vector |
...
ResultDescription "Gauss Points Stresses" PlainDeformationMatrix |
...
Values |
...
1 1.05 1 0 0.0 -19.4607 -1.15932 -1.43171 -6.18601 |
...
2.1 0 1 0.0 -19.4607 -1.15932 -1.43171 -6.18601 |
...
3.15 1 1 0.0 -19.4607 -1.15932 -1.43171 -6.18601 |
...
2 1.2 0 0 0.0 -20.6207 0.596461 5.04752 -6.00727 |
...
2.25 0 0 0.0 -20.6207 0.596461 5.04752 -6.00727 |
...
3.3 2.0855e-05 -1.9174e-05 0.0 -20.6207 0.596461 5.04752 -6.00727 |
...
3 1.35 2.0855e-05 -1.9174e-05 0.0 -16.0982 -1.25991 2.15101 -5.20742 |
...
2.4 2.0855e-05 -1.9174e-05 0.0 -16.0982 -1.25991 2.15101 -5.20742 |
...
3.45 2.0855e-05 -1.9174e-05 0.0 -16.0982 -1.25991 2.15101 -5.20742 |
...
... |
...
191 29.55 4.2781e-05 -0.00017594 0.0 -0.468376 12.1979 0.610867 3.51885 |
...
30.6 4.2781e-05 -0.00017594 0.0 -0.468376 12.1979 0.610867 3.51885 |
...
31.65 4.2781e-05 -0.00017594 0.0 -0.468376 12.1979 0.610867 3.51885 |
...
192 29.7 4.2781e-05 -0.00017594 0.0 0.747727 11.0624 1.13201 3.54303 |
...
30.75 4.2781e-05 -0.00017594 0.0 0.747727 11.0624 1.13201 3.54303 |
...
31.8 2.4357e-05 -0.00018974 0.0 0.747727 11.0624 1.13201 3.54303 |
...
End Values |