GiD - The personal pre and post processor

Skip to end of metadata
Go to start of metadata

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 3 Next »

*LocalAxesDef(EulerAngles)

This is similar to the LocalAxesDef command, only with the EulerAngles option.

It returns three numbers that are the 3 Euler angles (radians) that define a local axes system , with the so-called "x-convention," (see https://mathworld.wolfram.com/EulerAngles.html)


EulerAngles


Rotation of a vector expressed in terms of euler angles.




How to calculate X[3] Y[3] Z[3] orthonormal vector axes from three euler angles angles[3]


cosA=cos(angles[0])
sinA=sin(angles[0])
cosB=cos(angles[1])
sinB=sin(angles[1])
cosC=cos(angles[2])
sinC=sin(angles[2])
 
X[0]= cosC*cosA - sinC*cosB*sinA
X[1]= -sinC*cosA - cosC*cosB*sinA
X[2]= sinB*sinA
 
Y[0]= cosC*sinA + sinC*cosB*cosA
Y[1]= -sinC*sinA + cosC*cosB*cosA
Y[2]= -sinB*cosA
 
Z[0]= sinC*sinB
Z[1]= cosC*sinB
Z[2]= cosB


How to calculate euler angles angles[3] from X[3] Y[3] Z[3] orthonormal vector axes

if(Z[2]<1.0-EPSILON && Z[2]>-1.0+EPSILON){
    double senb=sqrt(1.0-Z[2]*Z[2]);
    angles[0]=acos(-Y[2]/senb);
    if(X[2]/senb<0.0) angles[0]=M_2PI-angles[0];
    angles[1]=acos(Z[2]);
    angles[2]=acos(Z[1]/senb);
    if(Z[0]/senb<0.0) angles[2]=M_2PI-angles[2];    
} else {
    angles[0]=0.0;
    angles[1]=acos(Z[2]);
    angles[2]=acos(X[0]);
    if(-X[1]<0.0) angles[2]=M_2PI-angles[2];
}


  • No labels