GiD - The personal pre and post processor

Skip to end of metadata
Go to start of metadata

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 4 Current »

Results can be grouped into one block. These results belong to the same time step of the same analysis and are located in the same place. So all the results in the group are nodal results or are defined over the same gauss points set.


Each Result group is identified by a ResultGroup header, followed by the results descriptions and its optional properties - such as components names and ranges tables, and the results values - all between the lines Values and End values.


The structure is as follows and should:

  • Begin with a header that follows this model

ResultGroup "analysis name" step_value my_location "location name"
where

ResultGroup: is not case-sensitive;

"analysis name": is the name of the analysis of this ResultGroup, which will be used for menus; if the analysis name contains spaces it should be written between "" or between {}.

step_value: is the value of the step inside the analysis "analysis name";

my_location: is where the ResultGroup is located. It should be one of the following: OnNodes, OnGaussPoints. If the ResultGroup is OnGaussPoints, a "location name" should be entered.

"location name": is the name of the Gauss Points on which the ResultGroup is defined.


  • Be followed by at least one of the results descriptions of the group

ResultDescription "result name" my_result_type[:components_number]
ResultRangesTable "Name of a result ranges table"
ComponentNames "Name of Component 1", "Name of Component 2"
where

ResultDescription: is not case-sensitive;

"result name": is a name for the Result, which will be used for menus; if the result name contains spaces it should be written between "" or between {}.

my_type: describes the type of the Result. It should be one of the following: Scalar, Vector, Matrix, PlainDeformationMatrix, MainMatrix, or LocalAxes. The number of components for each type is as follows:

One for a Scalar: the_scalar_value

Three for a Vector: X, Y and Z

Six for a Matrix: Sxx, Syy, Szz, Sxy, Syz and Sxz

Four for a PlainDeformationMatrix: Sxx_value, Syy, Sxy and Szz

Twelve for a MainMatrix: Si, Sii, Siii, ViX, ViY, ViZ, ViiX, ViiY, ViiZ, ViiiX, ViiiY and ViiiZ

Three for a LocalAxes: euler_ang_1, euler_ang_2 and euler_ang_3

Two for ComplexScalar: real and imag

Six for ComplexVector: x_real, x_imag, y_real, y_imag, z_real, z_imag

Twelve for ComplexMatrix: Sxx_real, Syy_real, Szz_real, Sxy_real, Syz_real, Sxz_real, Sxx_imag, Syy_imag, Szz_imag, Sxy_imag, Syz_imag, Sxz_imag

Following the description of the type of the result, an optional modifier can be appended to specify the number of components separated by a colon. It only makes sense to indicate the number of components on vectors and matrices:


Vector:2, Vector:3 or Vector:4: which specify:

Vector:2: X and Y

Vector:3: X, Y and Z

Vector:4: X, Y, Z and |Vector| (module of the vector, with sign for some tricks)



The default (Vector) is 3 components per vector.


Matrix:3 or Matrix:6: which specify:

Matrix:3: Sxx, Syy and Sxy

Matrix:6: Sxx, Syy, Szz, Sxy, Syz and Sxz



The default (Matrix) is 6 components for matrices.


ComplexVector:4 or ComplexVector:6 which specify

ComplexVector:4: x_real, x_imag, y_real, y_imag

ComplexVector:6: x_real, x_imag, y_real, y_imag, z_real, z_imag


ComplexMatrix:3 or ComplexMatrix:6 which specify

ComplexMatrix:3: Sxx_real, Syy_real, Sxy_real, Sxx_imag, Syy_imag, Sxy_imag

ComplexMatrix:6: Sxx_real, Syy_real, Szz_real, Sxy_real, Syz_real, Sxz_real, Sxx_imag, Syy_imag, Szz_imag, Sxy_imag, Syz_imag, Sxz_imag





Here are some examples:

ResultDescription "Displacements" Vector:2
ResultDescription "2D matrix" Matrix:3
ResultDescription "LineDiagramVector" Vector:4


and where (optional properties)

  • ResultRangesTable "Name of a result ranges table": (optional) is not case-sensitive, and is followed by the name of the previously defined Result Ranges Table which will be used if the Contour Ranges result visualization is chosen (see Result Range Table);
  • ComponentNames "Name of Component 1", "Name of Component 2": (optional) is not case-sensitive, and is followed by the names of the components of the results which will be used in GiD. The number of Component Names are:

One for a Scalar Result

Three for a Vector Result

Six for a Matrix Result

Four for a PlainDeformationMatrix Result

Six for a MainMatrix Result

Three for a LocalAxes Result



  • End with the results values:

Values
location_1 result_1_component_1_value result_1_component_2_value result_1_component_3_value result_2_component_2_value result_2_component_2_value result_2_component_3_value
. . .
location_n result_1_component_1_value result_1_component_2_value result_1_component_3_value result_2_component_2_value result_2_component_2_value result_2_component_3_value

End Values


where

Values: is not case-sensitive, and indicates the beginning of the results values section;

The lines

location_1 result_1_component_1_value result_1_component_2_value result_1_component_3_value result_2_component_2_value result_2_component_2_value result_2_component_3_value

. . .

location_n result_1_component_1_value result_1_component_2_value result_1_component_3_value result_2_component_2_value result_2_component_2_value result_2_component_3_value


are the values of the various results described with ResultDescription for each location. All the results values for the location 'i' should be written in the same line 'i'.
The number of results values are limited thus:



If the Result is located OnNodes, they are limited to the number of nodes defined in ProjectName.post.msh.

If the Result is located OnGaussPoints "My GP", and if the Gauss Points "My GP" are defined for the mesh "My mesh", the limit is the number of gauss points in "My GP" multiplied by the number of elements of the mesh "My mesh".



Holes are allowed. The element nodes with no result defined will not be drawn, i.e. they will appear transparent.


The number of components for each ResultDescription are:



for Scalar results: one component result_number_i scalar_value

for Vector results: three components result_number_i x_value y_value z_value

for Matrix results: six components (3D models)3D: result_number_i Sxx_value Syy_value Szz_value Sxy_value Syz_value Sxz_value

for PlainDeformationMatrix results: four components result_number_i Sxx_value Syy_value Sxy_value Szz_value

for MainMatrix results: twelve components result_number_i Si_value Sii_value Siii_value Vix_value Viy_value Viz_value Viix_value Viiy_value Viiz_value Viiix_value Viiiy_value Viiiz_value

for LocalAxes results: three components describing the Euler angles result_number_i euler_ang_1_value euler_ang_2_value euler_ang_3_value





End Values: is not case-sensitive, and indicates the end of the results group values section.



Note: Vectors in a ResultGroup always have three components.
Note: Matrices in a ResultGroup always have six components.
Note: All the results of one node or gauss point should be written on the same line.
Note: For Matrix and PlainDeformationMatrix results, the Si, Sii and Siii components are calculated by GiD, which represents the eigen values & vectors of the matrix results, and which are ordered according to the eigen value.


Nodal ResultGroup example:

ResultGroup "Load Analysis" 1 OnNodes
ResultDescription "Ranges test" Scalar
ResultRangesTable "My table"
ResultDescription "Scalar test" Scalar
ResultRangesTable "Pressure"
ResultDescription "Displacements" Vector
ComponentNames "X-Displ", "Y-Displ" "Z-Displ"
ResultDescription "Nodal Stresses" Matrix
ComponentNames "Sx", "Sy", "Sz", "Sxy", "Syz", "Sxz"
Values
    1 0.0     0.000E+00 0.000E+00  0.000E+00 0.0 0.550E+00  0.972E-01 -0.154E+00 0.0 0.0 0.0
    2 6.4e-01 0.208E-04 0.208E-04 -0.191E-04 0.0 0.506E+00  0.338E-01 -0.105E+00 0.0 0.0 0.0
    3 0.0     0.355E-04 0.355E-04 -0.376E-04 0.0 0.377E+00  0.441E-02 -0.547E-01 0.0 0.0 0.0
...

  115 7.8e-01 0.427E-04 0.427E-04 -0.175E-03 0.0 0.156E-01 -0.158E-01 -0.300E-01 0.0 0.0 0.0
  116 7.4e-01 0.243E-04 0.243E-04 -0.189E-03 0.0 0.216E-02 -0.968E-02 -0.231E-01 0.0 0.0 0.0
End Values



Gauss Points ResultGroup example:

GaussPoints "My Gauss" ElemType Triangle "2D Beam"
Number Of Gauss Points: 3
Natural Coordinates: Internal
End gausspoints

ResultGroup "Load Analysis" 1 OnGaussPoints "My Gauss" 
ResultDescription "Gauss test"  Scalar
ResultDescription "Vector Gauss" Vector
ResultDescription "Gauss Points Stresses" PlainDeformationMatrix
Values
  1 1.05   1 0                      0.0     -19.4607 -1.15932 -1.43171 -6.18601           
    2.1    0 1                      0.0     -19.4607 -1.15932 -1.43171 -6.18601           
    3.15   1 1                      0.0     -19.4607 -1.15932 -1.43171 -6.18601           
  2 1.2    0 0                      0.0     -20.6207 0.596461 5.04752 -6.00727            
    2.25   0 0                      0.0     -20.6207 0.596461 5.04752 -6.00727            
    3.3    2.0855e-05 -1.9174e-05   0.0     -20.6207 0.596461 5.04752 -6.00727            
  3 1.35   2.0855e-05 -1.9174e-05   0.0     -16.0982 -1.25991 2.15101 -5.20742            
    2.4    2.0855e-05 -1.9174e-05   0.0     -16.0982 -1.25991 2.15101 -5.20742            
    3.45   2.0855e-05 -1.9174e-05   0.0     -16.0982 -1.25991 2.15101 -5.20742            
...

191 29.55  4.2781e-05 -0.00017594   0.0     -0.468376 12.1979 0.610867 3.51885            
    30.6   4.2781e-05 -0.00017594   0.0     -0.468376 12.1979 0.610867 3.51885            
    31.65  4.2781e-05 -0.00017594   0.0     -0.468376 12.1979 0.610867 3.51885            
192 29.7   4.2781e-05 -0.00017594   0.0     0.747727 11.0624 1.13201 3.54303              
    30.75  4.2781e-05 -0.00017594   0.0     0.747727 11.0624 1.13201 3.54303              
    31.8   2.4357e-05 -0.00018974   0.0     0.747727 11.0624 1.13201 3.54303                   
End Values



  • No labels