GiD - The personal pre and post processor
Geometry example
This example consists on a simple cylinder, like the one shown on the right. |
RAMSAN-ASCII-gid-v7.6 UNKNOWN 0 0 1 Tops 0 1 0 0 255 2 Lateral 0 1 0 255 255 0 0 1 1 1 2 3 0 0 2 0 -1.65134 -1.60324 0 1 2 1 2 3 0 0 2 0 -1.65134 -1.60324 3.76945 1 3 1 2 3 0 0 2 0 -1.80449 -3.49553 0 1 4 1 2 3 0 0 2 0 -1.80449 -3.49553 3.76945 2 1 1 2 2 0 0 2 0 1 2 2 2 1 2 2 0 0 2 0 3 4 11 3 1 2 2 0 0 2 0 1 3 5 2 2.98214 -1.65134 -1.60324 0 -2.59749 -1.52666 0 -2.67407 -2.47281 0 -2.75064 -3.41896 0 -1.80449 -3.49553 0 0 0 0 0.5 0.5 1 1 1 1 1 0.707107 1 0.707107 1 11 4 1 2 2 0 0 2 0 2 4 5 2 2.98214 -1.65134 -1.60324 3.76945 -2.59749 -1.52666 3.76945 -2.67407 -2.47281 3.76945 -2.75064 -3.41896 3.76945 -1.80449 -3.49553 3.76945 0 0 0 0.5 0.5 1 1 1 1 1 0.707107 1 0.707107 1 11 5 1 2 2 0 0 2 0 3 1 5 2 2.98213 -1.80449 -3.49553 0 -0.858344 -3.57211 0 -0.781767 -2.62596 0 -0.70519 -1.67981 0 -1.65134 -1.60324 0 0 0 0 0.5 0.5 1 1 1 1 1 0.707107 1 0.707107 1 3 6 1 2 2 0 0 2 0 4 2 -0.315383 0.025526 0.949244 4.63163 7.77322 1 0 0 0 0 1 0 0 0 0 1 0 -1.41253 -2.57491 3.76945 1 14 1 1 2 1 0 0 2 0 4 1 4 2 3 0 0 1 1 -2.67407 -2.47281 1.88473 0.996741 -0.080672 0 0 2 5 1 2 -1.65134 -1.60324 0 -1.65134 -1.60324 3.76945 -2.59749 -1.52666 0 -2.59749 -1.52666 3.76945 -2.67407 -2.47281 0 -2.67407 -2.47281 3.76945 -2.75064 -3.41896 0 -2.75064 -3.41896 3.76945 -1.80449 -3.49553 0 -1.80449 -3.49553 3.76945 0 0 1 1 0 0 0 0.5 0.5 1 1 1 1 1 1 0.707107 0.707107 1 1 0.707107 0.707107 1 1 6 2 1 2 1 0 0 2 0 4 1 5 2 6 1 1 0 0 -0.781767 -2.62596 1.88473 -10.6459 0.861634 -0 14 3 1 2 1 0 0 1 0 2 5 3 0 0 -1.72792 -2.54939 0 0 0 1 1 2 2 1 1 -2.7699 -1.5074 0 -2.7699 -3.59137 0 -0.685932 -1.5074 0 -0.685932 -3.59137 0 0 0 1 1 0 0 1 1 0 5 4 1 2 1 0 0 1 0 2 6 4 1 1 -1.41253 -2.57491 3.76945 0 0 -1 9 1 1 2 0 0 0 2 0 4 1 2 4 3 0 0 0 0 -1.72792 -2.54939 1.88473 0
This is the explanation of its content:
RAMSAN-ASCII-gid-v7.6
UNKNOWN 0
0
The GiD geometry ASCII file is wrote with rules of version 7.6, and without any problemtype (UNKNOWN)
The model has two layers, created with:
1 Tops 0 1 0 0 255
2 Lateral 0 1 0 255 255
0
The layer number 1 is named 'Tops', is not frozen, visible, and with RGB color R=0, G=0, B=255 (blue)
The layer number 2 is named 'Lateral', is not frozen, visible, and with RGB color R=0, G=255, B=255 (cyan)
Last 0 denotes the end of layers block
0
There is no meshing information attached to entities.
Then four points (code=1) are defined:
1 1 1 2 3 0 0 2 0
-1.65134 -1.60324 0
1 2 1 2 3 0 0 2 0
-1.65134 -1.60324 3.76945
1 3 1 2 3 0 0 2 0
-1.80449 -3.49553 0
1 4 1 2 3 0 0 2 0
-1.80449 -3.49553 3.76945
p1=(-1.65134,-1.60324,0)
p2=(-1.65134,-1.60324,3.76945)
p3=(-1.80449,-3.49553,0)
p4=(-1.80449,-3.49553,3.76945)
the meaning of
1 1 1 2 3 0 0 2 0
is
1==type_point 1=point_id 1=label_on 2=label_on_selection_off 3=higherentities 0=num_conditions 0=id_material 2=layer 'Lateral' 0=has_mesh_data
the point 1 belong to 3 curves (1, 3 and 5) then higherentities must be 3
2 1 1 2 2 0 0 2 0
1 2
2 2 1 2 2 0 0 2 0
3 4
This define curves 1 and 2 that are straigth lines (type==2). In this model that close a volume all curves belong to two surfaces, then its higherentity counter is 2
The curve 1 starts in the point 1 and end in the point 2
11 3 1 2 2 0 0 2 0
1 3 5 2 2.98214
-1.65134 -1.60324 0
-2.59749 -1.52666 0
-2.67407 -2.47281 0
-2.75064 -3.41896 0
-1.80449 -3.49553 0
0 0 0 0.5 0.5 1 1 1
1 1 0.707107 1 0.707107 1
11 4 1 2 2 0 0 2 0
2 4 5 2 2.98214
-1.65134 -1.60324 3.76945
-2.59749 -1.52666 3.76945
-2.67407 -2.47281 3.76945
-2.75064 -3.41896 3.76945
-1.80449 -3.49553 3.76945
0 0 0 0.5 0.5 1 1 1
1 1 0.707107 1 0.707107 1
11 5 1 2 2 0 0 2 0
3 1 5 2 2.98213
-1.80449 -3.49553 0
-0.858344 -3.57211 0
-0.781767 -2.62596 0
-0.70519 -1.67981 0
-1.65134 -1.60324 0
0 0 0 0.5 0.5 1 1 1
1 1 0.707107 1 0.707107 1
Previous text define curves 3, 4 and 5 that are NURBS (type==11)
1=start point 3=end point 5=num control points 2=degree 2.98214=length
the 5 control points coordinates are:
-1.65134 -1.60324 0
-2.59749 -1.52666 0
-2.67407 -2.47281 0
-2.75064 -3.41896 0
-1.80449 -3.49553 0
and the knots vector is:
0 0 0 0.5 0.5 1 1 1
1=is rational, weights= 1 0.707107 1 0.707107 1
3 6 1 2 2 0 0 2 0
4 2 -0.315383 0.025526 0.949244 4.63163 7.77322
1 0 0 0
0 1 0 0
0 0 1 0
-1.41253 -2.57491 3.76945 1
And curve 6 is a circumference arc (type==11)
4=start point 2=end point (-0.315383 0.025526)=2D center 0.949244=radius 4.63163=start angle 7.77322=end angle (rad)
and
1 0 0 0
0 1 0 0
0 0 1 0
-1.41253 -2.57491 3.76945 1
is a 4x4 transformation matrix that moves the 2D arc to the final 3D location
14 1 1 2 1 0 0 2 0
4
1 4 2 3
0 0 1 1
-2.67407 -2.47281 1.88473
0.996741 -0.080672 0
0 2 5 1 2
-1.65134 -1.60324 0
-1.65134 -1.60324 3.76945
-2.59749 -1.52666 0
-2.59749 -1.52666 3.76945
-2.67407 -2.47281 0
-2.67407 -2.47281 3.76945
-2.75064 -3.41896 0
-2.75064 -3.41896 3.76945
-1.80449 -3.49553 0
-1.80449 -3.49553 3.76945
0 0 1 1
0 0 0 0.5 0.5 1 1 1
1 1 1 0.707107 0.707107 1 1 0.707107 0.707107 1 1
Surface 1 is a NURBS surface (type==14), it has 4 boundary lines: 1, 4, 2, 3, with orientations same, same, diff, diff respectivelly
Its approximated center is (-2.67407 -2.47281 1.88473)
normal=(0.996741 -0.080672 0)
0=untrimmed 2=number control points u 5=number control points v 1=degree u 2=degree v
then are listed the control points, the knots u=(0 0 1 1) and knots v=(0 0 0 0.5 0.5 1 1 1)
and the weights=(1 1 0.707107 0.707107 1 1 0.707107 0.707107 1 1)
6 2 1 2 1 0 0 2 0
4
1 5 2 6
1 1 0 0
-0.781767 -2.62596 1.88473
-10.6459 0.861634 -0
Surface 1 is a Coons surface (type==6), it has 4 boundary lines: 1, 5, 2, 6, with orientations diff, diff, same, same. Then is printed its approximated center and normal.
The shape of kind of surface is defined only by its boundary.
14 3 1 2 1 0 0 1 0
2
5 3
0 0
-1.72792 -2.54939 0
0 0 1
1 2 2 1 1
-2.7699 -1.5074 0
-2.7699 -3.59137 0
-0.685932 -1.5074 0
-0.685932 -3.59137 0
0 0 1 1
0 0 1 1
0
Surface 3 is like the 1 a NURBS surface (type==14), but in this case is trimming a planar squared shape.
5 4 1 2 1 0 0 1 0
2
6 4
1 1
-1.41253 -2.57491 3.76945
0 0 -1
Surface 4 is a planar surface (type==5), that is defined by a center and normal, and the trimming boundary lines.
9 1 1 2 0 0 0 2 0
4
1 2 4 3
0 0 0 0
-1.72792 -2.54939 1.88473
0
This define the volume 1 (type==9) that is defined by 4 boundary surfaces: 1, 2, 4, 3 with orientations same, same, same, same.
and approximated center=(-1.72792 -2.54939 1.88473)
Last 0 is a NULL entity (type==0) that finish the definition of geometrical entities.
COPYRIGHT © 2022 · GID · CIMNE