GiD - The personal pre and post processor
Results example
Here is an example of results for the table in the previous example (see Mesh example):
GiD Post Results File 1.0 GaussPoints "Board gauss internal" ElemType Triangle "board" Number Of Gauss Points: 3 Natural Coordinates: internal end gausspoints GaussPoints "Board gauss given" ElemType Triangle "board" Number Of Gauss Points: 3 Natural Coordinates: Given 0.2 0.2 0.6 0.2 0.2 0.6 End gausspoints GaussPoints "Board elements" ElemType Triangle "board" Number Of Gauss Points: 1 Natural Coordinates: internal end gausspoints GaussPoints "Legs gauss points" ElemType Line Number Of Gauss Points: 5 Nodes included Natural Coordinates: Internal End Gausspoints ResultRangesTable "My table" # el ultimo rango es min <= res <= max - 0.3: "Less" 0.3 - 0.9: "Normal" 0.9 - 1.2: "Too much" End ResultRangesTable Result "Pressure" "Load Analysis" 1 Scalar OnGaussPoints "Board elements" Unit Pa Values 5 0.00000E+00 6 0.20855E-04 7 0.35517E-04 8 0.46098E-04 9 0.54377E-04 10 0.60728E-04 11 0.65328E-04 12 0.68332E-04 13 0.69931E-04 14 0.70425E-04 15 0.70452E-04 16 0.51224E-04 17 0.32917E-04 18 0.15190E-04 19 -0.32415E-05 20 -0.22903E-04 21 -0.22919E-04 22 -0.22283E-04 End Values Result "Displacements" "Load Analysis" 1 Vector OnNodes ResultRangesTable "My table" ComponentNames "X-Displ", "Y-Displ", "Z-Displ" Unit m Values 1 0.0 0.0 0.0 2 -0.1 0.1 0.5 3 0.0 0.0 0.8 4 -0.04 0.04 1.0 5 -0.05 0.05 0.7 6 0.0 0.0 0.0 7 -0.04 -0.04 1.0 8 0.0 0.0 1.2 9 -0.1 -0.1 0.5 10 0.05 0.05 0.7 11 -0.05 -0.05 0.7 12 0.04 0.04 1.0 13 0.04 -0.04 1.0 14 0.05 -0.05 0.7 15 0.0 0.0 0.0 16 0.1 0.1 0.5 17 0.0 0.0 0.8 18 0.0 0.0 0.0 19 0.1 -0.1 0.5 End Values Result "Gauss displacements" "Load Analysis" 1 Vector OnGaussPoints "Board gauss given" Unit m Values 5 0.1 -0.1 0.5 0.0 0.0 0.8 0.04 -0.04 1.0 6 0.0 0.0 0.8 -0.1 -0.1 0.5 -0.04 -0.04 1.0 7 -0.1 0.1 0.5 0.0 0.0 0.8 -0.04 0.04 1.0 8 0.0 0.0 0.8 0.1 0.1 0.5 0.04 0.04 1.0 9 0.04 0.04 1.0 0.1 0.1 0.5 0.05 0.05 0.7 10 0.04 0.04 1.0 0.05 0.05 0.7 -0.04 0.04 1.0 11 -0.04 -0.04 1.0 -0.1 -0.1 0.5 -0.05 -0.05 0.7 12 -0.04 -0.04 1.0 -0.05 -0.05 0.7 0.04 -0.04 1.0 13 -0.1 0.1 0.5 -0.04 0.04 1.0 -0.05 0.05 0.7 14 -0.05 0.05 0.7 -0.04 0.04 1.0 0.05 0.05 0.7 15 0.1 -0.1 0.5 0.04 -0.04 1.0 0.05 -0.05 0.7 16 0.05 -0.05 0.7 0.04 -0.04 1.0 -0.05 -0.05 0.7 17 0.0 0.0 0.8 -0.04 -0.04 1.0 -0.04 0.04 1.0 18 0.0 0.0 0.8 0.04 0.04 1.0 0.04 -0.04 1.0 19 0.04 -0.04 1.0 0.04 0.04 1.0 0.0 0.0 1.2 20 0.04 -0.04 1.0 0.0 0.0 1.2 -0.04 -0.04 1.0 21 -0.04 -0.04 1.0 0.0 0.0 1.2 -0.04 0.04 1.0 22 -0.04 0.04 1.0 0.0 0.0 1.2 0.04 0.04 1.0 End Values Result "Legs gauss displacements" "Load Analysis" 1 Vector OnGaussPoints "Legs gauss points" Unit m Values 1 -0.1 -0.1 0.5 -0.2 -0.2 0.375 -0.05 -0.05 0.25 0.2 0.2 0.125 0.0 0.0 0.0 2 0.1 -0.1 0.5 0.2 -0.2 0.375 0.05 -0.05 0.25 -0.2 0.2 0.125 0.0 0.0 0.0 3 0.1 0.1 0.5 0.2 0.2 0.375 0.05 0.05 0.25 -0.2 -0.2 0.125 0.0 0.0 0.0 4 -0.1 0.1 0.5 -0.2 0.2 0.375 -0.05 0.05 0.25 0.2 -0.2 0.125 0.0 0.0 0.0 End Values
COPYRIGHT © 2022 · GID · CIMNE